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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

TECHNICAL MEMORANDUM x-206 

W I N D - m L  STUDIES AT SUBSONIC AND TRANSONIC SPEEDS 

OF A MULTIPLE-MISSION VARIABLE-WING-SWEEP 

AIRPLANE CONFIGURATION* 

By William J. Alford, Jr., Arvo A. Luoma, 
and William P. Henderson 

SUMMARY 

Wind-tunnel studies have been made to determine the aerodynamic 
characteristics of a variable-wing-sweep airplane configuration capable 
of performing multiple missions. The tests covered the Mach number 
range from 0.23 Lo 1.30 for the 75' wing-sweep condition but for other 
sweep angles was limited to a Mach number of 0.93 .  It was found that 
at subsonic speeds the longitudinal stability characteristics were 
essentially the same for both 2 3 O  and 7 5 O  of wing leading-edge sweep 
with no wing translation necessary and that the longitudinal control 
was adequate. There was a slight degree of instability at the higher 
lift coefficients which, however, does appear tolerable. The transonic 
aerodynamic-center shift was rather large and aspears to be the most 
important aerodynamic problem. 
and control appear satisfactory except possibly the lateral control in 
the low-sweep condition where the damping is high. For this condition 
it may be necessary to augment the roll control tail with wing-tip 
ailerons. 

The lateral and directional stability 

INTRODUCTION 

Reference 1 briefly summarizes the results of a wind-tunnel study 
at low speed aimed toward the development of a variable-sweep-aircraft 
configuration having satisfactory stability and control characteristics 
over a large sweep range and not requiring the wing translation which 
characterized previous variable-sweep aircraft. Such an aircraft could 
combine efficient supersonic cruise with good landing and take-off char- 
acteristics while avoiding the added complexity, weight, and performance 

* Title, Unclassified. 
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penal t ies  associated with w i n g  t rans la t ion .  
reference 1 an a i r c r a f t  such as t h i s  would have desirable  landing and 
take-off c h a r a c t e r i s t i c s  and be capable of performing both low and high 
a l t i t u d e  a t t a c k  missions, combat a i r  p a t r o l m i s s i o n s ,  and as a supersonic 
t ransport  i t s  subsonic climb-out c a p a b i l i t y  would a l l e v i a t e  the  super- 
sonic  "bang" problem. I n  addi t ion,  the favorable range capabi l i ty  might 
reduce o r  eliminate the need f o r  f e r r y  tankers.  

As  discussed b r i e f l y  i n  

The configuration which f i n a l l y  evolved from the study exhibi ted 
almost i d e n t i c a l  low-speed longi tudinal  s t a b i l i t y  and control  charac- 
t e r i s t i c s  a t  25O and 75O of sweep with a maximum s t a t i c  margin of only 

about p percent of the mean aerodynamic chord (including the  moderate 

s h i f t  i n  center  of grav i ty  due t o  wing r o t a t i o n )  occurring a t  50° of 
sweep, thereby eliminating the need f o r  wing t rans la t ion .  This w a s  
accomplished, i n  the main, by providing a f i x e d  port ion of the wing 
ahead of t h e  center  of grav i ty .  The i n s t a b i l i t y  contributed by t h i s  
f ixed  port ion increases as the r o t a t i n g  port ion of the wing i s  swept 
back, due t o  the reduction i n  wing l i f t - c u r v e  slope and thereby tends t o  
counteract the  rearward s h i f t  of the r o t a t i n g  wing aerodynamic center .  
Adequate l a t e r a l  and d i r e c t i o n a l  s t a b i l i t y  and control  were a l s o  obtained 
throughout t h e  sweep range and the l i f t - c u r v e  slope increased from about 
0.045 t o  about 0.085 as the sweep decreased from 75' t o  2 5 O .  

1 
2 

I n  view of the  desirable  low-speed c h a r a c t e r i s t i c s  of the configura- 
t i o n  developed, the study w a s  extended t o  high subsonic speeds f o r  the 
complete sweep range and t o  transonic and supersonic speeds f o r  the high 
sweep condition. The purpose of t h i s  paper therefore  i s  t o  present  the 
r e s u l t s  of the  high subsonic and t ransonic  s tud ies  along with the complete 
resu l t s  from the low-speed study. I n  addi t ion  t o  the basic  configuration 
the low-speed study included tests of two canard ta i ls  t o  provide design 
information appl icable  t o  a possible  r e t r a c t a b l e  canard configuration. 
The supersonic r e s u l t s  obtained a t  a Mach number of 2.01 are presented 
i n  reference 2 and therefore  only the summary d a t a  w i l l  be repeated 
herein.  

* 

COEFFICIENTS AND SYMBOLS 

The r e s u l t s  a r e  re fer red  t o  the body-axis system except the lift 
and drag which a re ,  of course, r e f e r r e d  t o  the wind-axis system. (See 
f i g .  1.) A l l  coef f ic ien ts  a r e  nondimensionalized wi th  respect  t o  the  
geometric c h a r a c t e r i s t i c s  associated wi th  the maximum sweep condition. 
The moment center  i s  located a t  0.417 percent of the mean aerodynamic 
chord of the 75' sweep condition as shown i n  f igure  2. 
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me * e  
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L i f t  l i f t  coe f f i c i en t ,  - 
q s w  

Drag drag coef f ic ien t ,  - 
q s w  

Pitching moment pi tching moment, 
qSG 

Rolling moment 
rolling-moment coef f ic ien t ,  

q S w b  

Yawing moment yawi ng-mome n t  c oe f f i c i ent  , 
q S w b  

side-force coe f f i c i en t ,  Side force 
q s w  

- -, per deg 

- 3% - -, per deg 
cnP a p  

ac, 
yP aB 

C = -, per deg 

Q 

R 

SW 

dynamic pressure,  lb/sq f t  

Reynolds number based on 

wing a rea  ( 7 5 O  sweep condition),  1.916 sq f t  

SC canard-surface area,  sq f t  

- 
C 

b 

mean aerodynamic chord ( 7 5 O  sweep condi t ion) ,  1.14 f t  

wing span ( 7 5 O  sweep condi t ion) ,  1.89 f t  

M Mach number 

a angle of a t t ack ,  deg 
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? angle of s i d e s l i p ,  deg 



wing leading-edge sweep angle,  deg 

hor izonta l - ta i  1 deflect ion,  deg 

def lec t ion  of l e f t  wing a i l e r o n  o r  it,L - it,R ( f o r  
r o l l i n g  t a i l )  

r o l l - c o n t r o l  effect iveness  parameter, per deg 

yawing-moment effect iveness  parameter due t o  r o l l  control ,  
per deg 

s t a t i c  margin, percent 

drag a t  zero l i f t  

l i f  t-curve slope 

maximum l i f t - d r a g  r a t i o  

MODEL AND 

- 
C 

TEST EQUIPMENT 

Model 

model configuration t e s t e d  w a s  t h a t  r e f e r r e d  t o  i n  reference 1 
as configuration I V  and a three-view drawing i s  presented i n  f i g u r e  2. 
The pivot point  f o r  the outer  wing panels w a s  located a t  approximately 
56 percent o f  the semispan of the  wing a t  
sweep angles of l2.5', 25O, 50°, 62.5O, and 75'. 
f ixed  a t  A = 600. 
sweep t o  1.88 a t  7 5 O  sweep. The wing employed NACA 636A004.5 a i r f o i l  
sections normal t o  the leading edge. The horizontal-  and v e r t i c a l - t a i l  
panels were i d e n t i c a l  i n  plan form. The all-movable horizontal  tail,  
which was used f o r  p i t c h  control ,  w a s  mounted on the body center  l i n e  a t  
-15' dihedral.  R o l l  control  could be provided by a i le rons  located a t  
the wing  t i p s  o r  by d i f f e r e n t i a l  def lec t ion  of the h o r i z o n t a l - t a i l  
panels. Two s izes  of a u x i l i a r y  canard surfaces  were a l s o  t e s t e d .  For 
t e s t s  with f ixed  t r a n s i t i o n  narrow bands of No. 60 carborundum grains  
were placed along the 10-percent-chord l i n e s  of the l i f t i n g  surfaces  and 
around the fuselage a t  the 10-percent s t a t i o n .  

A = 7 5 O .  The wing panels had 
The inboard panel w a s  

The wing aspect  r a t i o  var ied from 6.25 a t  12.5' 

L 
7 
7 
0 
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The t e s t s  were made i n  the  Langley high-speed 7- by 10-foot wind 
tunnel and the Langley 8-foot transonic pressure tunnel .  

5 

The Langley high-speed 7- by 10-foot tunnel i s  a rectangular  s o l i d -  
wal l  atmospheric tunnel capable of providing Mach numbers up t o  approxi- 
mately 0.93 f o r  t he  s i z e  model used i n  t h i s  inves t iga t ion .  The Langley 
8-foot t ransonic  pressure tunnel has a t e s t  sec t ion  which i s  square i n  
cross  sec t ion .  The upper and lower walls of the  t es t  sec t ion  have 
longi tudina l  s l o t s  which permit continuous t e s t i n g  through the  t ransonic  
speed range up t o  approximately M = 1.30. The t o t a l  pressure of the  
flow i n  the  tunnel can be var ied.  

Instrumentation 

I n  both tunnels the model w a s  i n t e rna l ly  instrumented with a s i x -  
component strain-gage balance and was s t i n g  mounted. Photographs of t he  
model mounted on the s t i n g  i n  the Langley high-speed 7- by 10-foot tunnel 
are shown i n  f igu re  3. The data  measured i n  the  7- by 10-foot tunnel 
were recorded on s t r i p  cha r t  recording oscil lographs while those i n  the 
Langley 8-foot  transonic pressure tunnel were recorded e l e c t r i c a l l y  on 
punch cards.  

TESTS, CORRECTIONS, AND ACCURACY 

Tests 

The major port ion of the  t e s t s  i n  the Langley high-speed 7- by 10- 
10-foot tunnel  were made a t  a Mach number of 0.25 over an angle-of- 
a t t a c k  range of -2' t o  19'. 
t e s t s  were made a t  s i d e s l i p  angles of -4' and 4'. A l imi ted  amount of 
data  f o r  Mach numbers from 0.60 t o  0.93 w e r e  a l s o  obtained i n  the  
Langley high-speed 7- by 10-foot tunnel over a reduced angle-of-attack 
range. 

The l a t e r a l  and d i r ec t iona l  parameter 

The tests i n  the  Langley 8-foot transonic pressure tunnel  were made 
The angle of a t t ack  var ied a t  Mach numbers general ly  from 0.80 t o  1.30. 

from approximately -bo t o  the value corresponding t o  the wing load l i m i t .  
The configurat ions with the  horizontal  t a i l  def lected 0' and with the  
hor izonta l  t a i l  removed were t e s t e d  a t  a t o t a l  pressure of both 
2,120 i b j s q  ft ( i . 0  atmosphere) and 600 i b / sq  ft ( 0 .  j8 aimospnerej . Tne 
lower t o t a l  pressure w a s  used t o  extend the angle-of-attack range of the 
t e s t s .  The other t e s t  configurations were invest igated a t  a t o t a l  p res -  
sure  of 800 lb / sq  f t .  A l i m i t e d  amount of data were obtained a t  a t o t a l  
pressure of 1,000 lb /sq  f t .  
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The tunnel a i r  w a s  dr ied s u f f i c i e n t l y  t o  avoid condensation e f f e c t s .  
A p l o t  of the The t e s t s  were made a t  a stagnation temperature of 122O F. 

average Reynolds number, based on E ,  of the invest igat ion aga ins t  Mach 
number a t  the various tes t  t o t a l  pressures i s  given i n  f igure  4. 
variat ion of Reynolds number f o r  the t e s t s  i n  the Langley high-speed 7- 
by 10-foot tunnel is  a l s o  shown. 

The 

Corrections 

Jet-boundary and blockage corrections as calculated by the methods of 
references 3 and 4, respect ively,  have been applied t o  the data measured 
i n  the solid-wall  tunnel (high-speed 7- by 10-foot tunnel ) .  

I 

For the t e s t s  i n  the s lot ted-wal l  tunnel (8-foot transonic pressure 
tunnel) a t  subsonic speeds the interference e f f e c t s  of the tunnel boundary 
were considered negl igible .  A t  a Mach number of 1.3 the  data were c l e a r  
of the interference e f f e c t s  of wal l - ref lected disturbances.  A t  Mach num- 
bers of 1.03, 1.06, 1.13, and probably 1 . 2  the flow over the model w a s  
subject t o  influence by wal l - ref lected disturbances.  Previous r e s u l t s  
have indicated t h a t  the interference e f f e c t s  of wal l - ref lected d is turb-  
ances a re  s m a l l  a t  a Mach number of 1.03. A t  Mach numbers of 1.06, 1.13, 
and 1 . 2  the magnitudes and slopes of the force and moment data  obtained 
herein show no obvious i r r e g u l a r i t i e s  o r  changes which can be ascr ibed t o  
interference e f f e c t s .  
varying from 7 . 5 O  i n  the v e r t i c a l  plane t o  14.3' i n  the  horizontal  plane.  
This small value of the nose angle would tend t o  make the interference 
e f f e c t s  of the  wal l - ref lected fuselage-nose shock small. Also, the 
varying nose angle would spread out the interference e f f e c t s  a x i a l l y  on 
the model surface,  and one might thereby expect a lessening of the i n t e r -  
ference e f f e c t s  on overa l l  forces  and moments. The r e s u l t s  a t  Mach num- 
bers of 1.06, 1.13, and 1 .2  are probably adequate (as regards freedom 
from interference e f f e c t s )  f o r  most appl ica t ions .  

The nose angle ( t o t a l )  of the fuselage w a s  s m a l l ,  

L' 

A t  a Mach number of 1.3 the  nose of the fuselage w a s  located i n  a 
s ta t ic-pressure gradient,  requir ing a s m a l l  buoyancy correct ion t o  the 
drag data.  This correct ion consisted of reducing the measured drag 
coeff ic ients  a t  a Mach number of 1 .3  by 0.0010. 
bers no buoyancy correct ion was required.  

A t  the  o ther  Mach num- 

The base pressure w a s  measured and a l l  drag data were corrected t o  
a base pressure equal t o  free-stream s t a t i c  pressure.  

The angles of a t tack  and s i d e s l i p  were corrected f o r  the def lec t ion  
of the s t i n g  and balance under load. NO s t i n g  interference correct ions 
have been made t o  the data except t o  the extent  of the  p a r t i a l  correc- 
t i o n  for  s t i n g  interference inherent  i n  the base-pressure correct ion.  



. . 
.... 

7 

No correct ions have been made t o  the data f o r  bending of the model 
s t r u c t u r a l  components under aerodynamic load. . 

Accuracy 

The estimated accuracy of the  quant i t ies  measured i n  the Langley 
high-speed 7- by 10-foot tunnel a t  M = 0.25 i s  as follows: 

CL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  to.009 
CD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .0 .0025 

c 2  .0 .0003 
C m . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .0.0010 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Cn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.0004 
a ,  deg 20.1 
p ,  deg tO.1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
The r e s u l t s  a t  the higher Mach numbers would be more accurate because of 
the higher loads involved. 

The estimated accuracy of the data from the Langley 8-foot t ransonic  
pressure tunnel a t  a t o t a l  pressure of 1.0 atmosphere (2,120 lb/sq f t )  i s  
e s s e n t i a l l y  the same as t h a t  obtained i n  t e s t s  a t  high subsonic speeds i n  
the Langley high-speed 7- by 10-foot tunnel. The accuracy of the data  a t  
a t o t a l  pressure of 800 lb/sq f t  is poorer because of the smaller aerody- 
namic forces  and moments act ing on the model. 

PRESENTATION OF RESULTS 

Results a t  Low Speeds 

A f a i r l y  complete study of the longitudinal aerodynamic character-  
i s t i c s  w a s  made a t  a Mach number of 0.25 f o r  sweep angles of l2.5O, 25O, 
50°, 62.3', and 7 5 O  over a range of  angles of a t t a c k  from -2' t o  19' i n  
the Langley high-speed 7- by 10-foot tunnel. 
i n  f i g u r e s  5 t o  19 according t o  the following out l ine :  

Tne bas ic  data a r e  presented 

Figure 

5 
Basic conflguration ( n o r i z o n i a i  t a l l  o f f )  . . . . . . . . . . .  6 

7 Basic configuration with small canard (it = 0') 

9 Basic configuration with la rge  canard (it = Oo) 

E f f e c t  of sweep angle 
Basic configuration (it = 0') 

Basic configuration with small canard (horizontal  t a i l  o f f )  . . 8 

Basic configuration with la rge  canard (horizontal  t a i l  o f f )  . . 10 

. . . . . . . . . . . . . . . . .  
. . . . . . . .  
. . . . . . . .  
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Figure 
Effec t  of s t a b i l i z e r  incidence 

Basic configuration (A = 12.50) . . . . . . . . . . . . . . . . .  11 
Basic configuration (A = 50') . . . . . . . . . . . . . . . . . .  12 
Basic configuration (A = 75O) . . . . . . . . . . . . . . . . . .  13 
Basic configuration with canards (A = 50°) . . . . . . . . . . .  14 

Effec t  of component p a r t s  
Effect of f i l l e t  ( f ixed port ion of wing) A = 75' . . . . . . . .  
Effect  of f i l l e t  ( f ixed  port ion of w i n g )  A = . . . . . . .  16 

1.5 

Effect of body t a i l  and canards (wing o f f )  . . . . . . . . . . .  17 

Direct ional  s t a b i l i t y  and l a t e r a l  s t a b i l i t y  
and control  c h a r a c t e r i s t i c s  . . . . . . . . . . . . . . . . .  18 and 19 

Results a t  High Subsonic Speeds 

A series of tests l imited t o  low angles of a t t a c k  were made a t  Mach 
numbers up t o  0.93 i n  the Langley high-speed 7- by 10-foot tunnel t o  
determine the e f f e c t  of sweep throughout the probable Mach number range 
f o r  wing r o t a t i o n .  The r e s u l t s  are presented i n  f igures  20 and 21. 

Results a t  Transonic Speeds 

A r a t h e r  complete set of tests were made with the high-sweep con- 
f igura t ion  (A = 7 5 O )  i n  the Langley 8-foot t ransonic  pressure tunnel and 
the basic data a r e  presented i n  f igures  22 t o  27 according t o  the f o l -  
lowing out l ine  : 

Figure 
E f f e c t  of Mach number on longi tudinal  aerodynamic c h a r a c t e r i s t i c s  

i t = o o  22 

i t  = -50 . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23 
i t = - 1 o  O . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24 

Horizontal t a i l  off . . . . . . . . . . . . . . . . . . . . . . .  Zj5 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

E f f e c t o f  i t . .  . . . . . . . . . . . . . . . . . . . . . . . .  26 

E f f e c t  of Mach number on longi tudinal  and l a t e r a l  aero- 
dynamic c h a r a c t e r i s t i c s  of d i f f e r e n t i a l l y  def lected t a i l  
configuration . . . . . . . . . . . . . . . . . . . . . . . . . . .  27 

Summary of Mach number e f f e c t s  . . . . . . . . . . . . . . . .  28 t o  30 
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ANALYSIS OF RESULTS 

Results a t  Low Speeds 

9 

Since the r e s u l t s  obtained a t  a Mach number of 0.25 have been d i s -  
cussed i n  reference 1 only a f e w  observations w i l l  be made here.  
f igure  5 it can be seen t h a t  the l2.5O and 25' sweep conditions have 
e s s e n t i a l l y  the same l i f t  and drag charac te r i s t ics .  However, s ince the 
25' sweep condition provides longitudinal s t a b i l i t y  charac te r i s  t i cs  
which a r e  very similar t o  those provided by the 7 5 O  condition it would 
appear that the 25' condition should be considered as t h e  low-sweep con- 
d i t i o n .  
f i c i e n t s  but comparisons with contemporary a i rp lane  configurations i n d i -  
ca te  that these c h a r a c t e r i s t i c s  are probably to le rab le .  However, i f  
t h i s  i n s t a b i l i t y  should prove t o  be a problem a careful t a i l o r i n g  of 
s ta l l  cont ro l  devices should provide an adequate solut ion.  I n  addi t ion  
t o  the f a c t  t h a t  the longi tudinal  s t a b i l i t y  i s  e s s e n t i a l l y  the  same f o r  
both the  high- ( 7 5 O )  and low-sweep ( 2 5 O )  conditions it i s  p e r t i n e n t  t o  
note that the maximum aerodynamic-center s h i f t  r e l a t i v e  t o  the 25' sweep 
condition occurred i n  the  intermediate sweep angles and corresponded t o  
61. percent of the mean aerodynamic chord ( f i g .  21) .  

s h i f t  el iminates the  need f o r  w i n g  t r a n s l a t i o n  and thereby avoids t h e  
added complexity, weight, and performance p e n a l i t i e s  associated with t h i s  
wing t r a n s l a t i o n .  

From 

Some degree of i n s t a b i l i t y  i s  evident a t  the higher l i f t  coef- 

This extremely small 
2 

The maximum trimmed l i f t - d r a g  r a t i o s  increased from 7.1 a t  a sweep 
angle of 750 ( f i g .  13) t o  10.8 a t  a sweep angle of 12.5O ( f i g .  11). 
l i f t  c o e f f i c i e n t  developed a t  a reasonable landing a t t i t u d e  of l5O w a s  
approximately 0.25 higher a t  25O sweep than a t  7 5 O  sweep. 
the f a c t  that f l a p s  should be more e f fec t ive  a t  the  lower sweep, po in ts  
t o  a considerable reduction i n  the landing speed. 

The 

This, p lus  

The l a t e r a l  and d i r e c t i o n a l  s t a b i l i t y  and cont ro l  c h a r a c t e r i s t i c s  
( f i g s .  18 and 19) appear s a t i s f a c t o r y  except possibly the  r o l l  cont ro l  
provided by the t a i l  f o r  the low-wing-sweep condition where the damping 
i s  high. Wing-tip a i le rons  may be necessary t o  augment t h i s  condition. 

Results a t  High Subsonic Speeds 

Inasmuch as the t r a n s i t i o n  from one sweep condition t o  the o t h e r  
would, i n  all probabi l i ty ,  be made a t  moderate o r  high subsonic Mach 
numbers, addi t iona l  t e s t s  were made i n  the  Langley high-speed 7- by 
10-foot tunnel t o  determine the e f f e c t  of sweep angle on the longi tudinal  
s t a b i l i t y  c h a r a c t e r i s t i c s  a t  high subsonic speeds. Tests were made a t  
Mach numbers up t o  0.93 f o r  an angle-of-attack range l imi ted  by the 



Pitching-moment c h a r a c t e r i s t i c s , -  The v a r i a t i o n  of pitching-moment 
coef f ic ien t  with l i f t  coef f ic ien t  i s  general ly  nonlinear.  (See f i g .  22, 

10 

st rength of t h e  model and the basic  data  are presented i n  f igure  20. 
For the two design conditions (25O and 7 5 O  wing sweep), data w e r e  obtained 
wi th  both f r e e  and f i x e d  t r a n s i t i o n .  For the l imi ted  angle-of-attack 
range covered, the e f f e c t  of f i x i n g  t r a n s i t i o n  w a s  mainly l imi ted  t o  an 
increase i n  minimum drag. 
d i n a l  s t a b i l i t y  c h a r a c t e r i s t i c s  a t  severa l  subsonic Mach numbers i s  sum- 
marized i n  f i g u r e  21 where the slope of the pitching-moment curves C 

(a t  low lift c o e f f i c i e n t s )  are presented as a funct ion of sweep angle.  If 
the center of grav i ty  i s  assumed t o  be invar ian t  with sweep angle and f u e l  

The e f f e c t  of wing sweep angle on the longi tu-  

V L  

consumption and t o  l i e  a t  the moment reference (see f i g .  2 )  the values 
presented i n  f i g u r e  21 represent  the s t a t i c  margin of the a i r c r a f t .  The 7 
results indicate  that the e f f e c t  of sweep on the s t a t i c  margin is  essen- 7 
t i a l l y  independent of Mach number f o r  Mach numbers up t o  0.80. 

L 

A s  the 0 
Mach number i s  increased t o  0.91 there  i s  an increase i n  the s t a t i c  
margin f o r  the 25' sweep condition of about 4 percent of the  mean aero- 
dynamic chord of the 750 wing. This increase i n  s t a t i c  margin due t o  
Mach number decreases as the sweep increases .  For a constant Mach num- 
ber  the l a r g e s t  change i n  s t a t i c  margin encountered i n  r o t a t i n g  the wing 
from 25O sweep t o  7 5 O  sweep occurred a t  500 sweep and amounted t o  only 
about & percent of the mean aerodynamic chord. 

2 

Results a t  Transonic Speeds 

Tests i n  the  Langley 8-foot transonic pressure tunnel were made only 
f o r  the high-speed configuration ( 7 5 O  sweep). 

L i f t  c h a r a c t e r i s t i c s . -  The var ia t ion  of l i f t  c o e f f i c i e n t  with angle 
of a t tack  a t  t ransonic  speeds is  qui te  similar t o  that encountered a t  low 
speeds i n  that there  i s  a s u b s t a n t i a l  change i n  slope i n  a small range of 
angles of a t t a c k  near 4'. 
a t t a c k  below and above t h i s  range, the var ia t ion  of l i f t  c o e f f i c i e n t  with 
angle of a t t a c k  w a s  e s s e n t i a l l y  l i n e a r .  The l i f t - c u r v e  slope increased 
between l i f t  c o e f f i c i e n t s  of 0 and 0 .4  by about 30 percent a t  subsonic 
speeds and by about one-half t h a t  amount a t  supersonic speeds. 

(See f i g .  22, f o r  example.) A t  angles of 

Figure 28 presents  the l i f t - c u r v e  slope a t  zero l i f t  c o e f f i c i e n t  as 
a function of Mach number f o r  the complete configuration. The l i f t -  
curve slope a t  zero l i f t  c o e f f i c i e n t  increased by about 15 percent 
between a Mach number of 0.60 and the supersonic Mach numbers ( f i g .  28) .  
The l i f t -curve.  slope measured a t  a Mach number of 2.01 ( r e f .  2) i s  a l s o  
shown i n  f i g u r e  28. 

f o r  example.) 
t e r i s t i c s ,  are evident a t  intermediate lift c o e f f i c i e n t s  a t  t h e  lower 

Decreases i n  s t a b i l i t y ,  tending toward pitch-up charac- 
L 
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Mach numbers. Except possibly f o r  the case M = 0.6 the  unstable ten-  
dencies are minor and f o r  Mach numbers above about 0.90 the non l inea r i t i e s  
consis ted mainly of gradual increases  in  s t a b i l i t y  with increasing l i f t  
coe f f i c i en t .  Since the  75' sweep phase of t he  various missions of such 
an a i r c r a f t  would, i n  a l l  probabi l i ty ,  involve Mach numbers considerably 
above 0.60 it would appear that the var ia t ion  of @i tch ing  moment w i t h  
l i f t  coe f f i c i en t  is sa t i s f ac to ry .  

It w i l l  be noted t h a t  increases  i n  tunnel  pressure results i n  reduc- 
t i ons  i n  s t a b i l i t y .  It i s  believed that t h i s  reduction i s  due t o  
increased ae roe la s t i c  e f f ec t s  r a the r  than Reynolds number changes. 

The increase i n  s t a b i l i t y  w i t h  increasing Mach number i s  apparent 
i n  f igures  22 t o  25 and i s  summarized i n  f igu re  28. 
longi tudina l  s t a b i l i t y  parameter C 

Mach number and it w i l l  be noted that the  increase wi th  Mach number i n  
the t ransonic  range corresponds t o  about a 10-percent increase i n  s ta t ic  
margin (based on E ) .  
( r e f .  2) i s  a l s o  presented and ind ica tes  an add i t iona l  11-percent increase  
i n  s ta t ic  margin. This increase i n  s t a b i l i t y  is  undesirable and devices 
such as extendable canard surfaces  or  a var iab le  d ihedra l  hor izonta l  tail 
may have t o  be resor ted  t o .  

I n  f igu re  28 t h e  
i s  presented as a funct ion of W L  

The value measured a t  a Mach number of 2.01 

Drag cha rac t e r i s t i c s . -  I n  the  f a i r i n g  of t h e  drag data tes t  po in t s  
g rea t e r  weight w a s  given t o  the  results a t  a t o t a l  pressure of 
2,120 lb / sq  f t  than t o  those a t  the lower t o t a l  pressures ,  because of 
the bet ter  drag accuracy a t  the  t o t a l  pressure of 2,120 lb/sq f t .  

The t ransonic  drag-coeff ic ient  r ise f o r  the configuration with a 
ho r i zon ta l - t a i l  incidence of 0' amounted t o  0.006 ( f i g .  29).  
t i o n  of the maximum l i f t - d r a g  r a t i o  with Mach number f o r  both the zero 
s t a b i l i z e r  condition and the  trimmed condi t ion are a l s o  shown i n  f i g -  
ure 29. The t r i m  value of m a x i m u m  l i f t - d r a g  r a t i o  var ied from 8.2 a t  
a Mach number of 0.80 t o  about 6.0 a t  a Mach number of 1.3. The cor re-  
sponding ho r i zon ta l - t a i l  incidence f o r  t r i m  var ied  from - 1 . 3 O  t o  -4..5', 
and the  l i f t  coe f f i c i en t  f o r  t r i m  from 0.20 t o  0.26. 

The va r i a -  

A t  a Mach number of 2.01 a trimmed value of l i f t - d r a g  r a t i o  of about 
5.3 w a s  obtained. In  view of the  f a c t  t h a t  no attempt was made t o  ob ta in  
the  optimum configurat ion from a supersonic performance standpoint,  t h i s  
l i f t - d r a g  r a t i o  appears t o  be reasonable f o r  the  wind-tunnel Reynolds 
numbers. It m u s t  be kept i n  mind, however, t h a t  no a i r  i n l e t s  o r  canopy 
were incorporated on t h i s  model. 

Lateral control . -  Di f fe ren t la1  6e f l ec t ion  of t h e  ho r i zon ta l - t a i l  
panels w a s  used f o r  lateral  control and the  bas ic  results obtai1ie.d f o r  
5 O  def lec t ions  are presented i n  f igure 27. 

).9 
The results ind ica te  that the  
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r o l l  effect iveness  i s  r e l a t i v e l y  independent of angle of a t t ack  and Mach 
nmber .  The va r i a t ion  of C z 6  and Cn6 (6 = it,L - it,R) with Mach 

number a t  a = Oo from the  t ransonic  tests i s  presented i n  f igu re  30 
along with values from the tests a t  low subsonic and supersonic speeds. 
The value Cz8 var ies  from approximately 0.00075 a t  M = 0.25 t o  about 
0.00056 a t  M = 2.01. The va r i a t ion  of Cn6 i s  a l s o  shown i n  f igu re  30 
and it w i l l  be noted t h a t  it var ies  from about 0.OOOg a t  M = 0.25 
about 0.0005 a t  
c i e n t  roll cont ro l  and yawing moments i n  the  d i r ec t ion  t o  augment the  
roll. The la rge  magnitudes of the  yawing moments may present  a problem, 
however. 

. 

t o  
M = 2.01. The d i f f e r e n t i a l  t a i l  appears t o  o f f e r  suffi- 

CONCLUDING REMARKS 

The wind-tunnel s tud ie s  discussed herein ind ica te  that a var iab le-  
sweep-airplane configurat ion can be designed such that the  subsonic 
longi tudinal  s t a b i l i t y  c h a r a c t e r i s t i c s  w i l l  be e s s e n t i a l l y  the same f o r  
both 25' and 75' of w i n g  leading-edge sweep without the  use of wing 
t r ans l a t ion .  This i s  accomplished, i n  the  main, by providing a f i x e d  
por t ion  of the wing ahead of the center  of grav i ty .  The i n s t a b i l i t y  
contr ibuted by t h i s  f i xed  por t ion  increases ,  as the  r o t a t i n g  por t ion  of 
t he  wing i s  swept back, due t o  the  reduct ion i n  wing l i f t - cu rve  slope and 
thereby tends t o  counteract the  rearward s h i f t  of the  ro t a t ing  wing aero- 
dynamic center .  
sweep condition ind ica ted  a r a t h e r  la rge  rearward aerodynamic-center 

value of 5.3 being obtained a t  a Mach number of 2.01. This increase i n  
s t a b i l i t y  a t  supersonic speeds could, of course, be reduced by the  use of 
extendable canard surfaces  or by a var iab le  dihedral  hor izonta l  t a i l .  

Tests a t  t ransonic  and supersonic speeds f o r  t he  75' 

s h i f t  b u t  the  trimmed l i f t - d r a g  r a t i o s  were s t i l l  r e l a t i v e l y  high, wi th  a I 

The longi tudina l  cont ro l  i s  adequate f o r  a l l  conditions and the  
la teral  and d i r e c t i o n a l  s t a b i l i t y  and con t ro l  appear s a t i s f a c t o r y  except 
poss ib ly  the  lateral  cont ro l  i n  the  low-sweep condition where the damping 
is  high. For t h i s  condi t ion it may be necessary t o  augment the roll con- 
t r o l  tail with wing-tip a i l e rons .  

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley F ie ld ,  V a . ,  September 11, 1959. 
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Figure 1.- System of axes used showing positive direction of forces, 
moments, and angles. 
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. 

c 

(b) A = 2 5 O .  L-79-2045 

Figure 3.- Photographs of t h e  variable-sweep configurat ion s t i n g  mounted 
i n  the  Langley 7- by 10-foot wind tunnel .  
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Figure 20.- Mach number effects on the longitudinal aerodynamic 
characteristics. 
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A = 25" 
M Transition 
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Figure 20. - Continued. 
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Figure 20.- Continued. 
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Figure 20. - Continued. 
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Figure 20.- Concluded. 
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Figure 21.- Effect of wing ieadizg-edge-sweep angle on the longi tudina l  
s t a b i l i t y  for several  Mach-numbers. . 
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Figure 22.- Longitudinal aerodynamic characteristics. A = 7 5 O ;  it = 0'; 

p = 00; Langley 8-foot transonic pressure tunnel. 
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Figure 22.- Continued. 
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Figure 22.- Concluded. 
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Figure 23. -  Longitudinal aerodynamic characteristics. A = 75'; it = -5'; 
p = 0'; 8-foot transonic pressure tunnel. 
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Figure 24.- Longitudinal aerodynamic characteristics. A = 7 5 O ;  it = -loo; 
total pressure, 800 lb/sq ft; p = Oo; 8-foot transonic pressure tunnel. 
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Figure 25.  - Longitudinal aerodynamic characteristics. A = 75'; horizon- 
tal tail o f f ;  p = 00; 8-foot transonic pressure tunnel. 
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Figure 26.- Variation of pitching-moment coefficient with angle of' 
A = 7 5 O ;  p = Oo; attack at various horizontal-tail incidences. 

8-foot transonic pressure tunnel. 
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Figure 27.- Longitudinal and lateral aerodynamic characteristics. 
A = 75'; it,L = 5'; it,R = -50; t o t a l  pressure, 800 lb / sq  ft; p = Oo; 

8-foot transonic pressure tunnel. 
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Figure 28.- Effect of Mach number on some of the longitudinal aerodynamic 
characteristics. A = 75'. 
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Fi(:ure 29.- Ef'fect, of Mach number on some of the l o n g i t u d i n a l  aerodynamic 
cha rc i c t e r i s t i c s .  h = 750. 
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